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Abstract. A molecular dynamics (MD) approach to magnetic alloys with complex magnetic
structures is proposed on the basis of the temperature control MD method and the functional
integral technique. The theory allows us to determine automatically the magnetic structure of
a large system with a few hundred atoms in a unit cell. Numerical calculations forγ -FeMn
alloys have been performed using 108 atoms in a unit cell. It is demonstrated thatγ -FeMn
alloys form various complex magnetic structures due to competing interactions: the ‘first-kind’
antiferromagnetic structure for less than 20 at.% Fe, the helix-like structure for 20 at.% Fe,
noncollinear structures between 30 and 60 at.% Fe, the collinear-like structure for 65 at.% Fe,
noncollinear structures between 70 and 80 at.% Fe, collinear structures between 85 and 95 at.%
Fe, and the helical structure forγ -Fe. The average magnetic moments calculated from these
structures are shown to explain the concentration dependence—in particular, the existence of
the peculiar minimum of the average magnetic moment at 50 at.% Fe.

1. Introduction

In the last half century, a large number of investigations have been carried out, and notable
progress in the theory has been made as regards the electronic structure and magnetic
properties of 3d transition metals and alloys. For example, the development of first-
principles theories enabled us to calculate quantitatively the ground-state magnetization
of Fe, Co, Ni, and their compounds [1]. The coherent potential approximation (CPA)
theory [2] explained the basic aspects of the Slater–Pauling curves for the ferromagnetic 3d
transition metal alloys [3]. Recent finite-temperature theories [4–8] using the CPA clarified
the magnetic properties of transition metals and alloys at finite temperatures.

Very little progress in the theory, on the other hand, has been achieved as regards
achieving an understanding of the magnetic structures and properties of 3d elements and
their alloys with nearly half-filled bands such as Cr, Mn,γ -Fe, and their alloys, since they
show complexity in the magnetic structures and anomalies due to competing interactions.

The investigations using the band theories to explain the complex magnetic structures
have been based on a simple energy comparison among several possible magnetic structures,
or the minimization of the free energy with respect to the order parameters found from
experiments, or susceptibility analysis for the magnetic instability against fluctuations around
the nonmagnetic state. Although they are useful for finding the electronic origin of the
stability of the magnetic structures, they are not suitable for determining complex magnetic
structures, since these methods do not guarantee global minima of the systems. This is a
serious drawback for the systems in which there are many local minima in the free energy due
to competing interactions. We therefore recently developed a molecular dynamics method
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for itinerant-electron systems with competing magnetic interactions [9] on the basis of the
functional integral method [4–8, 10] and the MD method [11, 12]. The theory allows us to
determine automatically the global minimum of the free energy in the systems with large
unit cells, and hence the complex magnetic structure of the systems. Moreover, it describes
the second-order phase transition with increasing temperature due to the self-consistent
determination of the effective medium.

We have demonstrated in our previous paper [9] the existence of a variety of complex
magnetic structures in the fcc transition metals with d-electron numbers in the range between
6.0 and 7.0, where the ferromagnetic and antiferromagnetic interactions are expected to
compete with each other. We obtained the ‘first-kind’ antiferromagnetic (AFI) structure
for γ -Mn with a magnetic moment 2.5µB, and the helical spin structure forγ -Fe with a
magnetic moment 0.75µB and the wave vectorQ = (0, 1/3, 2/3) 2π/a using 108 atoms
in a unit cell; these results are consistent with those from experiments although the wave
vector is somewhat different from the experimental one:Q = (0, 0.1, 1) 2π/a [13]. (Here
a is a lattice parameter.) The rigid-band calculations of the average magnetic moment
explained the concentration dependence in disorderedγ -FeMn alloys up to 50 at.% Fe, but
failed to explain the peculiar minimum at 50 at.% Fe and the behaviours beyond it. This
suggests that extension of the theory to the disordered magnetic alloys is essential, even for
a qualitative explanation of the magnetic properties.

In this paper, we extend our MD approach to the random magnetic alloys, and apply
the theory to the disorderedγ -FeMn alloys. Theγ -FeMn alloys are well known to show
complex magnetic structures in the concentrated region due to competing magnetic inter-
actions and random atomic configuration. Neutron experiments [14] led to reports that
there are three different types of spin structure for the alloys: (1) theγ -Mn type for conc-
entration up to 30 at.% Fe; (2) the noncollinear spin arrangement for the concentration
range between 35 and 75 at.% Fe; and (3) theγ -Fe type beyond 80 at.% Fe. In particular,
a noncollinear structure called a multiple-spin-density wave with the three wave vectors
Q = (1, 0, 0) 2π/a, (0, 1, 0) 2π/a, and (0, 0, 1) 2π/a was proposed to exist at around
50 at.% Fe [14, 15], while collinear magnetic structure was reported for a single crystal of
γ -Fe66Mn34 alloy in inelastic neutron scattering experiments [16, 17].

The first theoretical investigation forγ -FeMn alloys was carried out by Asano and
Yamashita [18]. They explained the monotonic decrease of the average magnetic moment
up to 50 at.% Fe within a rigid-band calculation assuming AFI structure, and obtained the
density of states (DOS) ofγ -Mn showing bonding and antibonding due to local exchange
splitting as well as the DOS having the gap-like dip near the Fermi level forγ -Fe50Mn50

alloy. The rigid-band calculation, however, did not explain the minimum of the average
magnetic moment at 50 at.% Fe and the rapid increase of the moment beyond 50 at.% Fe.
Kübler et al [19] and Fujii et al [20] have performed total-energy band calculations forγ -
Fe50Mn50 alloys assuming the CuAu-type crystal structure and a few possible noncollinear
magnetic structures, but their calculations did not yield the three-Q spin-density wave
proposed on the basis of the experiments. Süss and Krey [21] made calculations for the
orderedγ -FeMn alloys with the collinear spin structure. They failed to obtain convergence
in their self-consistent equations, and therefore also failed to obtain the magnetic structure.

The MD approach can determine the most stable structure among all of the possible
magnetic structures in a large unit cell at finite temperatures. Therefore, the present approach
possesses more possibilities for detailed investigations of magnetic structures inγ -FeMn
alloys than the previous calculations. In particular, the approach to the substitutional alloys
is more reliable as compared with that to the pure metals even if the size of the MD unit cell
is not large, since the random potentials cause damping of long-range magnetic interactions
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and the random atomic configuration generally suppresses the spin frustrations.
The organization of this paper is as follows. We formulate the theory in section 2. We

derive in subsection 2.1 the free energy and related thermodynamic quantities on the basis of
the functional integral method. Locally rotated coordinates will be introduced so that the free
energy reduces to the generalized Hartree–Fock approximation at the ground state, which is
suitable for the description of the noncollinear magnetic structures. In subsection 2.2, we
present the molecular dynamics method for the random magnetic alloys, and the method of
electronic structure calculations for the magnetic force. In section 3, we present the results
of the numerical calculations for the magnetic structures and magnetic moments ofγ -FeMn
alloys. Various noncollinear structures are found beyond 20 at.% Fe. An interpretation of
the stability of the structures is given on the basis of the calculated DOS. The results of
calculations of the average magnetic moment are shown to explain the experimental data
well except those for a narrow region around 70 at.% of Fe. A summary of this paper is
given in the last section.

2. Formulation

2.1. The functional integral method

We adopt the following tight-binding d-band Hamiltonian with intra-atomic Coulomb
interactions describing the magnetism in transition metal alloys:

H = H0+H1 (1)

H0 =
∑
iνσ

ε0
i niνσ +

∑
iνjν ′σ

tiνjν ′a
†
iνσ ajν ′σ (2)

H1 = 1

4

∑
i

Uin
2
i −

∑
i

JiS
2
i . (3)

Hereε0
i andtiνjν ′ are the atomic level at sitei and the transfer integral for the orbitalsν at site

i andν ′ at sitej , respectively.Ui (Ji) denotes the intra-atomic Coulomb (exchange) integral
at sitei. niνσ = a†iνσ aiνσ is the number operator for the electrons at sitei, with orbital ν
and spinσ , anda†iνσ (aiνσ ) is the creation (annihilation) operator for an electron with spin
σ and orbitalν at site i. ni andSi in the interaction partH1 denote the charge and spin
densities at sitei, which are defined byni =

∑
νσ niνσ andSi =

∑
νσσ ′ a

†
iνσ (σ)σσ ′aiνσ ′/2,

respectively.
To derive an expression for the free energy from the partition function which reduces to

the generalized Hartree–Fock approximation at the ground state, we introduce locally rotated
coordinates at each site, and rewrite the interaction Hamiltonian by means of operators
{n̂iν, m̂iνα} on the rotated coordinates as follows:

H1 = 1

8

∑
iν

(Ui + 3Ji)n̂
2
iν +

1

4

∑
i

Ui
∑
νν ′

′
n̂iν n̂iν ′

− 1

8

∑
iν

(Ui + 3Ji)m̂
2
iνz −

1

4

∑
i

Ji
∑
νν ′

′∑
α

m̂iναm̂iν ′α. (4)

Here n̂iν =
∑

σ â
†
iνσ âiνσ and m̂iνα =

∑
σσ ′ â

†
iνσ (σα)σσ ′ âiνσ ′ . The creation(â†iνσ ) and

annihilation (âiνσ ) operators for an electron with spinσ are quantized along thez-axis
of the rotated coordinates at sitei, and are given by

â
†
iνσ =

∑
σ ′
a
†
iνσ ′Dσ ′σ (Ri) (5)
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âiνσ =
∑
σ ′
aiνσ ′D

∗
σσ ′(Ri) (6)

whereDσσ ′(Ri) denotes a rotation matrix for a spin at sitei.
The functional integral method provides us with an approximate calculation scheme

for the partition function describing the spin fluctuations at finite temperatures. We apply
the method to the Hamiltonian in terms of the rotated coordinates. The method trans-
forms the interacting Hamiltonian into the one-electron Hamiltonian with time-dependent
random charge and exchange fields{ζiν(τ ), ξiν(τ )} by adopting the Hubbard–Stratonovich
transformation [22, 23]:

e−βH1(τ )1τ =
[ N∏
i=1

(
(1τ)D

(4π)D
detAi

)1/2 x,y,z∏
α

(
(1τ)D

(4π)D
detBαi

)1/2]∫ [ N∏
i=1

D∏
ν=1

dξiν(τ ) dζiν(τ )

]
× exp

[
− 1τ

4

∑
iνν ′

(
ζiν(τ )Aiνν ′ζiν ′(τ )+

∑
α

ξiνα(τ )B
α
iνν ′ξiν ′α(τ )

)
+ 1τ

2

∑
iνν ′

(
iζiν(τ )Aiνν ′ n̂iν ′(τ )+

∑
α

ξiνα(τ )B
α
iνν ′m̂iν ′α(τ )

)]
(7)

Aiνν ′ = 1

2
(Ui + 3Ji)δνν ′ + Ui(1− δνν ′) (8)

Bαiνν ′ = Ji(1− δνν ′) (α = x, y) (9)

Bziνν ′ =
1

2
(Ui + 3Ji)δνν ′ + Ji(1− δνν ′). (10)

Hereβ is the inverse temperature defined byT −1. H1(τ ) denotes the HamiltonianH1 in
the interaction representation and1τ is an infinitesimal time interval.N (D) denotes the
number of sites (orbital degeneracy), and detAi denotes the determinant of matrixAiνν ′ for
orbital indices.

The partition function is then written as

Z =
∫ [ N∏

i=1

D∏
ν=1

δξiν(τ ) δζiν(τ )

]
Z0(ξ(τ ), ζ(τ ))

× exp

[
−1

4

∑
iνν ′

∫ β

0
dτ

(
ζiν(τ )Aiνν ′ζiν ′(τ )+

∑
α

ξiνα(τ )B
α
iνν ′ξiν ′α(τ )

)]
(11)

Z0(ξ(τ ), ζ(τ )) = Tr

[
T exp

(
−
∫ β

0
H(τ, ξ(τ ), ζ(τ )) dτ

)]
(12)

H(τ, ξ(τ ), ζ(τ )) = K0(τ )− 1

2

∑
iνν ′

(
iζiν(τ )Aiνν ′ n̂iν ′(τ )+

∑
α

ξiνα(τ )B
α
iνν ′m̂iν ′α(τ )

)
. (13)

HereT in equation (12) denotes the time order product. The operatorK0 in equation (13)
is defined byH0 − µNe, µ andNe being the chemical potential and the total number of
electrons, respectively. The functional integral

∫
[
∏D
ν=1 δζiν(τ )] in equation (11) is defined

as ∫ N ′∏
n=1

[(
(1τ)D detAi
(4π)D

)1/2 D∏
ν=1

dζiν(τn)

]
→
∫ [

D∏
ν=1

δζiν(τ )

]
(14)

where the imaginary timeτ is divided intoN ′ points in the range [0, β], and τn stands for
the nth point.
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The functional integral method describes the basic behaviours of the spin fluctuations in
the limits of strong and weak Coulomb interaction within the static approximation [7] which
neglects the time dependence of the fictitious fields. By neglecting the transverse static spin
fluctuations in the rotated coordinates, we can express the partition function in the static
approximation as integrals over spatially fluctuating fields{ζi, ξi}, which are conjugate to
the charge-density operatorn̂i and spin-density operator̂Siz:

Z({ei}) =
∫ N∏

i=1

[(
βJ̃i

4π

)1/2

dξi

(
βŨi

4π

)1/2

dζi

]
Tr(e−βHst(ξe,−iζ ))

× exp

[
−1

4
β
∑
i

(Ũiζ
2
i + J̃iξ2

i )

]
(15)

Hst(ξe, ζ ) =
∑
iνσ

(
ε0
i − µ+

1

2
Ũiζi

)
niνσ − 1

2

∑
iν

J̃iξiei ·mi +
∑
iνjν ′σ

tiνjν ′a
†
iνσ ajν ′σ . (16)

The field variablesζi andξi are defined by

ζi = 1

β

∫ β

0

D∑
ν=1

ζiν(τ ) dτ (17)

ξi = 1

β

∫ β

0

D∑
ν=1

ξiνz(τ ) dτ (18)

and the effective Coulomb and exchange energy parameters are defined as

Ũi =
[

1− 1

2D

]
Ui + 3

2D
Ji (19)

J̃i = 1

2D
Ui +

[
1+ 1

2D

]
Ji. (20)

The unit vectorei in equation (16) denotes the direction of the rotatedz-axis at sitei.
The partition function does not satisfy rotational invariance since we neglected the

transverse spin fluctuations in the rotated coordinates. Therefore we averageZ({ei}) over
all of the directions{ei}, and obtain the free energy as follows:

Fst = −β−1
∫ [ N∏

i

(
βJ̃i

4π

)1/2

dξi dei

]
e−βE(ξ) (21)

E(ξ) = −β−1 ln Tr(e−βHst(ξ,ζ ))− 1

4

∑
i

(Ũiζ
2
i − J̃iξ2

i ). (22)

Here dei = (4π)−1 sinθi dθi dφi andξi = ξiei . We adopted the saddle-point approximation
for the charge fields inHst, so ζi(ξ) satisfies the condition∂E/∂ζi = 0:

ζi(ξ) = 〈ni〉0 = Tr(nie−βHst(ξ,ζ ))

Tr(e−βHst(ξ,ζ ))
(23)

where〈ni〉0 denotes the thermal average with respect toHst. It should be noted that the free
energy (21) reduces to that of the generalized Hartree–Fock approximation at the ground
state.

We introduce here, according to Hubbard [4], the charge potentialwi(ξ) defined as

wi(ξ) = 1

2
Ũ (ζi(ξ)− ζ 0

i ). (24)
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Here ζ 0
i is a constant. The saddle-point condition∂E/∂ζi = 0 reduces to∂E/∂wi = 0,

which leads to the condition

ζ 0
i = 〈ni〉0

({
ε0
j − µ− wj(ξ)

})− 2

Ũ
wi(ξ). (25)

We chooseζ 0
i such that{wi(ξ)} vanish atT = 0: ζ 0

i = 〈ni〉0({ε0
j − µ}).

In the strong-̃U limit, the charge-neutrality conditionζ 0
i = ni can be satisfied at each

site, whereni on the right-hand side denotes the average electron number of the pure metal
for the atom at sitei. Therefore equation(25) for determining the charge potential reduces
to the following equation in the strong-Ũ limit:

ni = 〈ni〉0
({
ε0
j − µ− wj(ξ)

})
. (26)

The energyE(ξ) in equation (22) then reduces to

E(ξ) =
∫

dω f (ω)
1

π
Im Tr ln(L−1− t)−

∑
i

niwi(ξ)+
∑
i

1

4
J̃iξ

2
i (27)

(L−1)iνσjν ′σ ′ = (ω + iδ − ε0
i + µ− wi(ξ))δij δνν ′δσσ ′ +

1

2
J̃iξi · (σ)σσ ′δij δνν ′ (28)

wheref (ω) is the Fermi distribution function and the constant term has been dropped.
Using the expression for the free energy given as equation (21), various thermodynamic

quantities can be calculated. The local magnetic moment (LM) is expressed in a semi-
classical form as

〈mi〉 =
〈(

1+ 4

βJ̃iξ
2
i

)
ξi

〉
. (29)

The local charge fluctuations〈n2
i 〉 and the amplitude of the LMs at sitei are given by

〈n2
i 〉 = ni +

(
1− 1

2D

)
n2
i −

1

2D

(
〈ξ2
i 〉 −

2

βJ̃i

)
(30)

〈m2
i 〉 = 3ni − 3

2D
n2
i +

(
1+ 1

2D

)(
〈ξ2
i 〉 −

2

βJ̃i

)
. (31)

The average〈∼〉 on the right-hand side of the above equations is defined by

〈∼〉 =
(∫ [∏

i

dξi

]
(∼)e−β9(ξ)

)/(∫ [∏
i

dξi

]
e−β9(ξ)

)
(32)

9(ξ) = E(ξ)+ 2T
∑
i

ln ξi . (33)

Note that we adopted spherical coordinates in the above average,〈∼〉.
It is noted that the disorder of the LMs originates from the spatial fluctuations of the

atomic level{ε0
i } and the transfer integrals{tiνjν ′ } in the substitutional binary alloys. The

off-diagonal disorder associated with the transfer integral is important when the relative
bandwidths of the constituent atoms A and B are considerably different. We consider in the
following a geometrical-mean model for the transfer integrals.

If the constituent metals A and B have similar energy bands, one can write the transfer
integral tiνjν ′ as

tiνjν ′ = r∗λ t0iνjν ′rλ′ (34)



Magnetic alloys with turbulent complex magnetic structures 2087

wheret0iνjν ′ represents the transfer integral of pure metal B, which is expressed as a linear
combination of the Slater–Koster parameters for the B atom, ddσBB, ddπBB and ddδBB. The
parameter|rλ| is defined as

|rλ| =
√
(ddm)λλ

(ddm)BB
(35)

which depends on the typeλ of the atom at sitei. If site i is occupied by an A atom,|rλ|2
is the ratio of the bandwidth of pure metal A to that of metal B; otherwise, it is 1.

The single-site approximation (SSA) [4–8] provides us with the simplest scheme for
evaluating the thermal average of LM (29) at finite temperatures. The LM at sitei is
regarded as an impurity in an effective mediumL−1

σ , so the average LM and its amplitude
for atomλ are expressed as

[〈mλ〉]c =
(∫ (

βJ̃λ

4π

)1/2

dξ ξ−2

(
1+ 4

βJ̃λξ
2

)
ξe−βEλ(ξ)

)
×
(∫ (

βJ̃λ

4π

)1/2

dξ ξ−2e−βEλ(ξ)
)−1

(36)

[〈m2
λ〉
]

c = 3nλ − 3

2D
n2
λ +

(
1+ 1

2D

)(
[〈ξ2

λ 〉]c− 2

βJ̃λ

)
(37)

where [ ]c represents the configurational average over sites.

Eλ(ξ) =
∫

dω f (ω)
1

π
Im
∑
0

d0 ln detλ0(ω + iδ, ξz, ξ
2
⊥)− nλwλ(ξ)+

1

4
J̃λξ

2 (38)

detλ0(ω + iδ, ξz, ξ
2
⊥) = (L̂−1

λ↑ − L−1
↑ + F−1

0↑ )(L̂
−1
λ↓ − L−1

↓ + F−1
0↓ )− |rλ|−4 1

4
J̃ 2
λ ξ

2
⊥ (39)

L̂−1
λσ = |rλ|−2

(
ω + iδ − ε0+ µ− wλ(ξ)+ 1

2
J̃λξzσ

)
. (40)

Here we have adopted a site-independent effective medium. The quantitiesδ and ξ⊥
represent an infinitesimal positive number and the transverse component of the field variable
respectively.d0 is the number of orbitalsν belonging to the same irreducible representation
0 of the point symmetry in the crystal.

The diagonal coherent Green functionF0σ in equation (39) is given by

F0σ =
[
(L−1− t0)−1

]
i0νσ,i0νσ

=
∫
ρ̂0(ε) dε

L−1
σ − ε

. (41)

Here we assumed that all of the sites on the Bravais lattice are equivalent to each other.
ρ̂0(ε) is the noninteracting DOS for an orbital belonging to the irreducible representation
0 for the pure metal B.

The magnetization and the average amplitude of LM at the concentration{cλ} are given
by

[〈m〉]c =
∑
λ

cλ[〈mλ〉]c (42)

[〈m2〉]c =
∑
λ

cλ[〈m2
λ〉]c. (43)

The charge potentialswλ(ξ) are calculated from the charge-neutrality condition (26):

nλ =
∫

dω f (ω)
(−1)

π
Im
∑
0σ

d0Gλ0σ (ω + iδ, ξz, ξ
2
⊥,L−1). (44)
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HereGλ0σ (ω + iδ, ξz, ξ2
⊥,L−1) is the impurity Green function defined as

Gλ0σ (ω + iδ, ξz, ξ
2
⊥,L−1) = |rλ|−2

(
L̂−1
λσ − L−1

λσ + F−1
0σ −

[1/(4|rλ|4)]J̃ 2
λ ξ

2
⊥

(L̂−1
λ−σ − L−1

−σ + F−1
0−σ )

)−1

.

(45)

The effective mediumL−1
σ (z) is determined self-consistently [2] via the following CPA

equation:∑
λ0

cλ
d0

D

∑
q=±1

1

2

(
1+ q [〈ξλz〉]c

[〈ξ2
λz〉]1/2

c

)
|rλ|2G0λσ (ω + iδ, q[〈ξ2

λz〉]1/2
c , [〈ξ2

λ⊥〉]c,L−1)

=
∑
0

d0

D
F0σ . (46)

Here the quantities [〈ξλz〉]c, [〈ξ2
λz〉]c, and〈ξ2

λ⊥〉]c are determined self-consistently.
The single-site theory at finite temperatures is useful for the description of systems with

simple magnetic structures. For complex magnetic structure one has to introduce a site-
dependent effective medium in the theory. The determination of the effective medium,
however, would be difficult due to the lack of information about the direction of the
polarization at each site. To avoid this difficulty and to treat the problem more exactly, we
apply the molecular dynamics (MD) method to substitutional magnetic alloys with complex
magnetic structures in the following section.

2.2. Applying the molecular dynamics method to substitutional magnetic alloys

The thermal average of the LM in equation (29) has a semi-classical form described by a
potential energy9(ξ). In order to determine the magnetic structures of the alloys, we adopt
the temperature control MD method with an extended system [11, 12], assuming ergodicity
of the system, and calculate the thermal averages of LM (29) by means of time averaging
of the fictitious LM ξi (t):

〈mi〉 = lim
t0→∞

1

t0

∫ t0

0

(
1+ 4

βJ̃iξ
2
i (t)

)
ξi (t) dt. (47)

The equations of motion leading to the classical ensemble described by9(ξ) are given by

˙ξiα = piα

µLM
(48)

ṗiα = −∂9(ξ)
∂ξiα

− ηαpiα (49)

η̇α = 1

Q

(∑
i

p2
iα

µLM
−NT

)
. (50)

Here piα is the momentum conjugate to the fictitious LMξiα at site i, and ηα is a
thermodynamic friction coefficient.µLM andQ are the effective-mass parameters for the
LM at site i and the thermal variableηα respectively.N in equation (50) is the number of
LMs in the system.

We introduced three independent variablesηα instead of a uniform friction coefficient
η in the above equations, so that the ergodic assumption is not violated even when the MD
method is applied to the impurity problem.
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The first term of equation (49) represents the magnetic force given by

−∂9(ξ)
∂ξiα

= 1

2
J̃i (〈miα〉0− ξiα)− 2T ξiα

ξ2
i

. (51)

Here 〈miα〉0 is the average magnetic moment at sitei with respect to the one-electron
Hamiltonian in random exchange fields. Note that equation (51) yields the generalized
Hartree–Fock equation∂9(ξ)/∂ξiα = 0 at T = 0. The second term in equation (49)
describes the effect of the heat bath used to keep the temperature constant by changing the
coefficientηα according to equation (50).

The average magnetic moment〈miα〉0 in equation (51) is written as the imaginary part
of the Green function:

〈miα〉0 =
∫

dω f (ω)
(−1)

π
Im
∑
νσ

(σαG)iνσ iνσ (52)

where

G = (L−1− t)−1. (53)

The products(σαG)iνσ iνσ in equation (52) are expressed by means of the diagonal Green
functions in the representation which diagonalizes the Pauli spin matrixσα (α = x, y, z):∑

σ

(σxG)iνσ iνσ = Giν1iν1−Giν2iν2 (54)∑
σ

(σyG)iνσ iνσ = Giν3iν3−Giν4iν4 (55)∑
σ

(σzG)iνσ iνσ = Giν↑iν↑ −Giν↓iν↓. (56)

Here

|iν1〉 = 1√
2
(|iν↑〉 + |iν↓〉) (57)

|iν2〉 = 1√
2
(|iν↑〉 − |iν↓〉) (58)

|iν3〉 = 1√
2
(|iν↑〉 + i|iν↓〉) (59)

|iν4〉 = 1√
2
(|iν↑〉 − i|iν↓〉). (60)

The diagonal Green functionGiναiνα (α = 1–4,↑,↓) can be calculated using the
recursion method [24, 25], and is expressed as a continued fraction as follows:

Giναiνα = 1

ω + iδ − a1iνα(ξ)− |b1iνα(ξ)|2

ω + iδ − a2iνα(ξ)− |b2iνα(ξ)|2

. . .
. . .

. . .− |bl−1iνα(ξ)|2
ω + iδ − aliνα(ξ)− Tliνα .

(61)

Here aliνα(ξ) and bliνα(ξ) are the recursion coefficients of thelth order. Tliνα is the
terminator at thelth level.
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At the present stage, we can treat a few hundred atoms at maximum in our MD method
due to the limited memory and computing time of our computer. We therefore extend the
system by adopting periodic boundary conditions and perform the MD simulation forN

atoms in a cubic unit cell. For random alloys, we determine the random atomic configuration
in the unit cell as follows to realize an alloy with a given concentrationcλ and a given atomic
short-range-order parameterτSRO, which is defined by

pAA = cA + cBτSRO. (62)

HerepAA denotes the probability of finding an A atom as the nearest neighbour of another
A atom.

We first create an A or B atom at each site with the probabilitycA or cB using random
numbers. Next, we replace an A atom with a B atom (or a B atom with an A atom) at
randomly chosen sites until the given concentrationcA is realized. Third, we calculate
the probabilityp̃AA = ∑i∈A NAA (i)/NAz, i.e. the probability of finding an A atom at the
neighbouring site of another A atom for the atomic configuration produced above. Here
NAA (i) denotes the number of A atoms at the nearest-neighbour sites of the A atom at site
i, z is the number of nearest-neighbour sites, andNA is the total number of A atoms among
N atoms in the unit cell. If the probabilitỹpAA is smaller (larger) thanpAA , we exchange
the A atom with the B atom in a randomly chosen A–B pair, and accept the exchange if
the newp̃AA is larger (smaller) than the old one. We obtain the alloy by repeating the
procedure until|p̃AA − pAA | 6 ε (=2/Nz) is satisfied.

We can allocate the atomic and exchange potentialsε0
i +µ−wi(ξ) and−J̃iξi ·σ/2 as

well as the transfer integrals given by (34) on the Bravais lattice according to the atomic
configuration determined above. Therefore we can calculate the Green function (61) by
using the recursion method at each MD step.

The periodicity of the LMs in the MD approach causes artificial magnetic forces
due to self-interactions and double-counting interactions via the recursion coefficients in
equation (61) due to the existence of equivalent LMs in different unit cells. This difficulty
may be removed by replacing the terminator with an effective one at the lowestlth recursion
level, where the artificial interactions appear first due to the periodic boundary conditions;
we replace there the terminatorTliνα with the terminator of the coherent Green function
[(L−1− t0)−1]iναiνα/|ri |2 by making the following approximation:

Tliνα ≈ |rλ|2T lνα. (63)

HereTlνα is the terminator of thelth level obtained from the coherent Green function (41).
The actual calculations ofTlνα for α = 1–4 are time consuming because the recursion

coefficients depend on the energy due to the off-diagonal elements in spin space. We
therefore adopt the following simpler expression forα = 1–4:

Tlνα = Tlν + (ĥ−1lν)
2

L̂−1− Tlν
. (64)

Here

Tlν = 1

2
(Tlν↑ + Tlν↓) (65)

1lν = 1

2
(Tlν↑ − Tlν↓) (66)

L̂−1 = 1

2
(L−1
↑ + L−1

↓ ) (67)

ĥ = 1

2
(L−1
↑ − L−1

↓ ). (68)
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The above relation forTlνα is reasonable forl = 1 in the polarized medium and for alll
in the nonpolarized medium. The effective mediumL−1

σ is determined by solving the CPA
equation.

We approximate the charge potential by the single-site one for brevity, and transform
equation (44) into the equation of motion for the charge potentialwi(ξ) as follows:

ẇi =
∑
α

Cλα(ξi )piα

µLM
(69)

where

Cλα(ξ) = J̃λ

2Bλ(ξ)

∫
dω f (ω)

(−1)

π
Im
∑
0

d0Gλ0α(Gλ0↑ +Gλ0↓) (70)

Bλ(ξ) =
∫

dω f (ω)
(−1)

π
Im
∑
0σ

d0

[
Gλ0σ

2+
(

J̃λξ⊥
2|rλ|4 detλ0

)2
]
. (71)

Note that the initial values{wi(ξi (0))} should satisfy equation (44).
In summary, the self-consistent MD method for substitutional magnetic alloys is realized

by taking the following steps. First, we determine the random atomic configuration for the
alloys and adopt the bandwidths of the pure metals to calculate the off-diagonal factors|rλ|2
using equation (35). Second, we take [〈ξλz〉]c, [〈ξ2

λz〉]c, [〈ξ2
λ⊥〉]c, and the charge potentials

wλ(ξ) for ξz = ±[〈ξ2
λz〉]1/2

c , ξ2
⊥ = [〈ξ2

λ⊥〉]c, within the single-site approximation, and solve
the CPA equation (46) for the effective mediumL−1

σ . Then we calculate the coherent Green
functionF0σ and the effective terminatorsTlνα from the effective medium. Next, we solve
the equations of motion of LMs (48)–(50) in the course of which we calculate the magnetic
force (51) using the recursion method at each time step. After obtaining the stationary
MD data we again calculate [〈ξλz〉]c, [〈ξ2

λz〉]c, [〈ξ2
λ⊥〉]c, andwλ(ξ) for ξz = ±[〈ξ2

λz〉]1/2
c , and

ξ2
⊥ = [〈ξ2

λ⊥〉]1/2
c . If the new output values are consistent with the input, we calculate the

magnetic moments of the alloys at finite temperatures using equation (47).

3. Numerical results

We have calculated the magnetic structures and the magnetic moments of disorderedγ -FeMn
alloys over all concentrations at low temperatures applying the MD approach described
in the last section. We adopted the Slater–Koster parameters used by Pettifor [26] with
the bandwidths 0.390 Ryd forγ -Fe and 0.443 Ryd forγ -Mn [1]. The exchange energy
parameters are chosen to be 0.065 Ryd [27] and 0.060 Ryd [28], and the d-electron numbers
are 7.0 and 6.25 forγ -Fe andγ -Mn, respectively. The effective medium was not determined
self-consistently in the present calculations; we adopted the medium obtained by using
the single-site approximation over all concentrations for brevity. Moreover, we adopted
N = 108 atoms per MD unit cell (a 3× 3× 3 fcc lattice).

In the numerical integrations for equations (48)–(50) and (69) we used the Runge–Kutta
method to the fourth order. The size of the time step was chosen as1t ≈ 0.01TLM . Here
TLM represents a characteristic time of fluctuations for LMs defined by

TLM = 2π

(
2µLM

cA J̃A + cBJ̃B

)1/2

. (72)

We adopted the parameterµLM = 1 and the parameterQ obtained from the condition that
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Figure 1. The distribution of local magnetic moments (LMs) forγ -FeMn alloys at various
concentrations obtained by the MD approach at 25 K: (a) 10 at.% Fe; (b) 20 at.% Fe; (c) 30 at.%
Fe; (d) 50 at.% Fe; (e) 65 at.% Fe; (f ) 80 at.% Fe; and (g) 90 at.% Fe. The symbols� and∗
represent the Fe LMs and Mn LMs respectively.

the characteristic time of the LM agrees with that of the friction coefficient expressed by

Tη = 2π

(
Q

2NT

)1/2

. (73)

It is noted that the initial configuration of{ξiα, piα, ηα} should have no influence
whatever on the result of the simulation in principle. The following choice of the initial
values, however, may lead to a quick approach to the stationary state, since these values
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Figure 1. (Continued)

are expected to be close to the average value in the stationary state:

ξiα(0) = ±
( 〈ξλ⊥2〉in

2

)1/2

(α = x, y) (74)

ξiz(0) = 〈ξλz〉in ± (〈ξ2
λz〉in − 〈ξλz〉2in)1/2 (75)

piα(0) = ±(µLMT )
1/2 (76)

ηα(0) = ±
(
T

Q

)1/2

. (77)

Here 〈ξλz〉in, 〈ξ2
λz〉in, and 〈ξλ⊥2〉in are the input values for the CPA calculations, and the
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Figure 1. (Continued)

sign± is determined randomly using random numbers. Starting from the random atomic
configuration of LMs mentioned above, we solved the equations of motion (48)–(50) and
(69) typically up to 6000 steps at 25 K for each concentration. The stationary states are
realized after a thousand MD steps in most cases.

3.1. Magnetic structure

Figures 1(a)–1(f ) and 2(a)–2(h) show the distributions of magnetic moments and the
magnetic structures calculated at 25 K for various concentrations, respectively.γ -Mn shows
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Figure 1. (Continued)

the first-kind antiferromagnetic structure in agreement with experiments [14, 29]. When Fe
atoms are added toγ -Mn, the Fe magnetic moments are arranged without violation of the
AFI structure. The magnitude of the Fe LM is calculated as 1.65µB in the impurity limit,
which is smaller than the calculated Mn LM: 2.4µB. This feature does not change up to
10 at.% Fe as shown in figures 1(a) and 2(a).

The collinear AF structure starts to collapse beyond 10 at.% Fe and changes to a helix-
like structure as shown in figures 1(b) and 2(b), which are obtained at 20 at.% Fe. The
structure obtained at 20 at.% Fe may be regarded as a mixture of two kinds of helical
structure with the wave vectorsQ = (0, 1/3, 1) 2π/a andQ′ = (0, 1/2, 1) 2π/a, so the
LMs on the three AF planes remain collinear and those on the other AF planes rotate on the
planes. The helical structure withQ = (0, 1/3, 1) 2π/a was obtained in the earlier rigid-
band calculation for the d-electron numbernd = 6.4, which corresponds to the 20 at.% Fe
alloy [9]. The alloying effect is therefore considered to be partly that of maintaining the
collinear AF planes and partly that of causing the distribution of the directions of the LMs.

The AF planes are almost destroyed at around 30 at.% Fe, and a noncollinear structure
which cannot be expressed in terms of simpleQ-vectors is obtained as shown in figures 1(c)
and 2(c). Although the Mn LMs still have a large value(2.5µB) there, the Fe LMs show
a small value(0.5µB). The structure at 40 at.% Fe is also noncollinear, but the Mn LMs
rapidly decrease there and take a small value(1.5µB). At 50 at.% Fe, the magnetic structure
shows a noncollinear structure with large-amplitude fluctuations as well as directional
fluctuations, as shown in figures 1(d) and 2(d). The concentration 50 at.% Fe corresponds
to the average d-electron number 6.625. The magnetic structure obtained by the rigid-
band calculations for d-electron numbernd = 6.6 was found to be the helical structure with
amplitude fluctuations from 0.75µB to 1.3µB [9]. The effect of configurational disorder with
competing interactions is therefore to remove the characteristicQ-vector and to enhance the
amplitude fluctuations. The magnetic structure at 60 at.% Fe is still noncollinear as shown
in figure 2(e) though the magnitudes of LMs are enhanced.
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(a)

Figure 2. The magnetic structures ofγ -FeMn alloys obtained by the MD method at 25 K:
(a) 10 at.% Fe; (b) 20 at.% Fe; (c) 30 at.% Fe; (d) 50 at.% Fe; (e) 60 at.% Fe; (f ) 70 at.% Fe;
(g) 80 at.% Fe; and (h) 90 at.% Fe. The larger and white (smaller and black) spheres represent
the Mn (Fe) atoms. The magnitudes of the LMs are drawn in arbitrary units.

With further increase of the Fe concentration, the magnetic structure becomes collinear-
like at around 65 at.% Fe as shown in figure 1(e), and changes to the noncollinear ones
shown in figure 2(f ) for 70 at.% Fe and figures 1(f ) and 2(g) for 80 at.% Fe. Between
85 at.% Fe and 95 at.% Fe, the collinear AF structures are stabilized as shown in figures 1(g)
and 2(h) for 90 at.% Fe. The locally ferromagnetic planes are found there, while the LMs
show a large distribution in magnitude (see figure 1(f )). These structures are changed to
the helical structure withQ = (0, 1/3, 2/3) 2π/a beyond 95 at.% Fe [9].

The calculated magnetic structures mentioned above agree qualitatively with the
experimental results. In fact, Endoh and Ishikawa [14] investigated the magnetic structures
in γ -FeMn alloys using the neutron diffraction and Mössbauer techniques. They concluded
that there are three different regions in the magnetic structure: the AFI collinear region
between 0 and 30 at.% Fe (corresponding to our results given in figures 1(a) and 2(a)),
the noncollinear region between 35 and 75 at.% Fe (corresponding to our results given
in figures 1(b)–1(d) and 2(b)–2(f )), and the collinear region between 80 and 100 at.%
Fe (corresponding to our results given in figures 1(g) and 2(h)). Using inelastic neutron
scattering, Bisantiet al [16, 17] reported that fcc Fe66Mn34 alloy has a collinear magnetic
structure, which may be explained by our result shown in figure 1(e). Tsunoda [13]
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(b)

Figure 2. (Continued)

investigated the cubicγ -Fe100−xCox (x < 4) alloys precipitated in Cu, and suggested
thatγ -Fe should have the helical structure withQ = (0, 0.1, 1) 2π/a, which is qualitatively
in agreement with our result [9].

There are some disagreements as regards the detailed magnetic structures between theory
and experiment. For example, the calculated magnetic structure at 50 at.% Fe is a turbulent
noncollinear magnetic structure as shown in figures 1(d) and 2(d), while a 3Q spin-density
wave with the wave vectors(1, 0, 0) 2π/a, (0, 1, 0) 2π/a, and(0, 0, 1) 2π/a was suggested
on the basis of a neutron experiment by Endoh and Ishikawa [14]. Moreover, for theQ-
vector in γ -Fe there is a considerable difference between our result and experiment. The
effect of considering a more detailed electronic structure, the size effect of the MD unit
cell, and the effect of spin–orbit interaction need to be examined in future investigations to
resolve the disagreements.

The DOS forγ -Mn with AFI structure is characterized by bonding and antibonding
peaks due to the local exchange splitting, which generally stabilizes the structure in the
systems with nearly half-filled bands [18]. This feature persists in the DOS at 10 and
20 at.% Fe as shown in figures 3(a) and 3(b). The small dip near the Fermi level as well
as the bonding–antibonding structure seem to stabilize the magnetic structures in Mn-rich
alloys. The DOS above 50 at.% Fe are characterized by the deep valley at the Fermi level
in the magnetic state and a sharp peak at the Fermi level in the nonmagnetic state as shown
in figures 3(c) and 3(d) for the concentrations 50 and 60 at.% Fe respectively. This feature
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(c)

Figure 2. (Continued)

stabilizes the structures obtained in our calculations. In particular, the associated kinetic
energy gain seems to become a maximum at 60 at.% Fe since the Fermi level lies just at
the sharp nonmagnetic peak at this concentration and the DOS in the magnetic state creates
a deeper valley. It may also explain the enhancement of the average magnetic moments at
60 at.% Fe.

3.2. Magnetic moments

Various calculated magnetic moments are presented in figure 4 together with the
experimental data [14]. When Fe atoms are added toγ -Mn, the average magnetic moment
decreases linearly from 2.4µB according to the simple dilution line up to 30 at.% Fe. The
calculated Fe LM is 1.65µB in the impurity limit. It remains constant up to 20 at.% Fe
and starts to decrease rapidly beyond 20 at.% Fe, while that of Mn is almost constant up to
30 at.% Fe.

The calculated average magnetic moment versus concentration curve explains the
experimental curve up to 50 at.% Fe. The rigid-band calculation led to a similar conc-
entration dependence up to 50 at.% Fe, but it failed to explain the minimum at 50 at.%
Fe and the behaviour beyond 50 at.% Fe [9, 18]. The present result shows a minimum at
50 at.% Fe in agreement with the experimental data, and increases at 60 at.% Fe. The Fermi
level there lies just at the peak of the nonmagnetic DOS. The enhancement of the average
magnetic moment can be attributed to a large kinetic energy gain due to the change of the
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(d)

Figure 2. (Continued)

peak to a dip at the Fermi level upon polarization, as was mentioned in the last subsection.
The average magnetic moment does not show a strong concentration dependence beyond
70 at.% Fe, although the Mn LMs start to increase beyond 80 at.% Fe with the localization
of electrons at Mn sites due to decreasing transfer integrals.

The calculated average LMs in the concentration regions 0–30 at.% Fe and 90–100 at.%
Fe are overestimated as compared with the experimental data. In both regions, theγ -FeMn
alloys show tetragonal distortion. Recent ground-state calculations [30] show that the Fe LM
changes sign in CsCl-type antiferromagnetic Mn, which is obtained by a 10% contraction
of the c-axis in γ -Mn. Thus, there is a possibility that Fe LMs reduce in magnitude with
tetragonal distortion. The effect of the tetragonal distortion will be discussed in a separate
paper. Our results do not reproduce the large magnetic moment (∼2.0µB) found from
neutron experiments at around 70 at.% Fe. This might be attributed to the atomic short-
range order or some local lattice distortion. These effects will be investigated in the future
to resolve the disagreement between theory and experiments.

4. Summary

We have presented a MD approach to magnetic alloys with complex magnetic structures
based on the isothermal MD method and the functional integral technique. The theory takes
into account the configurational disorder in substitutional binary alloys by using random
numbers. It reduces to the generalized Hartree–Fock approximation at the ground state,
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(e)

(f )

Figure 2. (Continued)
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(g)

(h)

Figure 2. (Continued)
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Figure 3. The total DOS at the ground state for various concentrations: (a) 10 at.% Fe;
(b) 20 at.% Fe; (c) 50 at.% Fe; and (d) 60 at.% Fe. The dashed curves show the DOS in the
nonmagnetic state. The vertical dotted lines indicate the Fermi level.

and describes the spin fluctuations at finite temperatures in a semi-classical way. The MD
method assumes ergodicity for the motion of the fictitious LMs, and obtains the thermal
average of the LMs by means of time averaging of the fictitious LMs after solving the
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Figure 3. (Continued)

6N+3 equations of motion for theN fictitious LMs. The magnetic forces are calculated by
using the recursion method at each MD step. The theory allows us to calculate automatically
the magnetic structures of random magnetic alloys with a few hundred atoms in a unit cell
at finite temperatures over all concentrations.

We performed the MD calculations using 108 atoms in a unit cell at 25 K to determine
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Figure 4. The concentration dependence of the magnetic moments inγ -FeMn alloys calculated
by the MD method at 25 K. The solid line represents the average magnetic moments, and the
upper (lower) dotted line represents the average Mn (Fe) magnetic moments. The chain lines
represent the average magnetic moments obtained from the neutron experiments [14].

the magnetic structures as well as the magnetic moments of the disorderedγ -FeMn alloys. It
was demonstrated that the alloys form various complex magnetic structures due to competing
interactions. The AFI structure was obtained up to 10 at.% Fe. Beyond 10 at.% Fe, the
collinear structure changes to the various complex structures: the helix-like one at 20 at.%
Fe, noncollinear structures between 30 and 60 at.% Fe, a collinear-like structure at 65 at.%
Fe, noncollinear structures between 70 and 80 at.% Fe, collinear structures between 85
and 95 at.% Fe, and helical structures withQ = (0, 1/3, 2/3) 2π/a beyond 95 at.% Fe,
which qualitatively explains the results obtained by the neutron diffraction experiments. The
calculated DOSs for these magnetic structures are found to be consistent with the stabilities
of the structures because of the existence of a dip near the Fermi energy.

The calculated magnetic moments explained the concentration dependence obtained
from the neutron experiments. We found the existence of a peculiar minimum at 50 at.%
Fe, which was not obtained by the rigid-band calculations. At 70 at.% Fe, we did not obtain
the large magnetic moment (∼2.0µB) found from the neutron experiment. The calculated
average LMs for the concentration regions 0–30 at.% Fe and 90–100 at.% Fe are somewhat
overestimated as compared with the experimental data, which was attributed to the tetragonal
lattice distortion.

In our calculations, we used a rather small size of unit cell and adopted periodic boundary
conditions to extend the system. Improved calculations could be done by considering a
larger size of unit cell, which would reduce the problem caused by the periodic boundary
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conditions. More detailed electronic structures should be taken into account in our MD
calculations in the future with the use of a first-principles tight-binding LMTO (linear
muffin-tin orbital) Hamiltonian to obtain more accurate magnetic structures.
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